If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7+4x-5=34
We move all terms to the left:
x^2+7+4x-5-(34)=0
We add all the numbers together, and all the variables
x^2+4x-32=0
a = 1; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·1·(-32)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*1}=\frac{8}{2} =4 $
| 11h+-9h=10 | | 8−8b=-10b | | z/5+60=68 | | c-c+c=9 | | 6(v+1)=54 | | 12w+2w-14w+w=19 | | -5+4=2x-3 | | 2-2r=4 | | 3x+17+109=180 | | 13.9r+10.66+3.3r=-18.07+15.5r | | 2=g/2+3 | | 3(x+5)=2×+20 | | 8b+15b+-9b+-12b=-10 | | 4p^2+28p+24=0 | | 7q-4q-2q-q+3q=18 | | (-1/480)(x^2)+3x=-4 | | -4+-3f=11 | | 3n=n/2-20 | | -(10^(x+2))=16 | | 1/2(3x-4)=3 | | 19x+17+3(2x-1)=x-10 | | m-3/7=37 | | c−3=-4c+2 | | 5d=-10+3d | | (-1/480)x^2+3x+4=0 | | 1/3v=72 | | 5(w+6)-3w=10 | | -3y=-2y+8 | | 1/(2z-1)=3/(25z) | | 17s-19s=8 | | 6(x+10/3)+5=1 | | -5b+5b=2+b |